Symmetric Matrices , Self - Linked Ideals , and Symbolic Powers
نویسندگان
چکیده
Inspired by recent work in the theory of central projections onto hyper-surfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert– Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetriz-ing a matrix that has, modulo a nonzerodivisor, a symmetric syzygy matrix. In addition, we establish a correspondence, roughly speaking, between Gorenstein perfect algebras of grade 1 that are birational onto their image, on the one hand, and self-linked perfect ideals of grade 2 that have one of the self-linking elements contained in the second symbolic power, on the other hand. Finally, we provide another characterization of these ideals in terms of their symbolic Rees algebras, and we prove a criterion for these algebras to be normal.
منابع مشابه
Gorenstein Algebras, Symmetric Matrices, Self-linked Ideals, and Symbolic Powers
Inspired by recent work in the theory of central projections onto hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert–Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetr...
متن کاملMinors of Symmetric and Exterior Powers
We describe some of the determinantal ideals attached to symmetric, exterior and tensor powers of a matrix. The methods employed use elements of Zariski's theory of complete ideals and of representation theory. Let R be a commutative ring. The determinantal ideals attached to matrices with entries in R play ubiquitous roles in the study of the syzygies of R{modules. In this note, we describe so...
متن کاملWinfried Bruns And
We describe some of the determinantal ideals attached to symmetric, exterior and tensor powers of a matrix. The methods employed use elements of Zariski’s theory of complete ideals and of representation theory. Let R be a commutative ring. The determinantal ideals attached to matrices with entries in R play ubiquitous roles in the study of the syzygies of R–modules. In this note, we describe so...
متن کامل1 N ov 2 00 6 COMBINATORIAL SYMBOLIC POWERS
Symbolic powers of ideals are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blow-ups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of seca...
متن کاملm at h . A C ] 2 2 A ug 2 00 6 COMBINATORIAL SYMBOLIC POWERS SETH
Symbolic powers of ideals are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blow-ups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of seca...
متن کامل